Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Pest Manag Sci ; 75(12): 3405-3412, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31436379

RESUMO

BACKGROUND: The barrier to diffusion of organic solutes across the plant cuticle is composed of waxes consisting of very long-chain aliphatic (VLCA) and, to varying degrees, cyclic compounds like pentacyclic triterpenoids. The roles of both fractions in controlling cuticular penetration by organic solutes, e.g. the active ingredients (AI) of pesticides, are unknown to date. We studied the permeability of isolated leaf cuticular membranes from Garcinia xanthochymus and Prunus laurocerasus for lipophilic azoxystrobin and theobromine as model compounds for hydrophilic AIs. RESULTS: The wax of P. laurocerasus consists of VLCA (12%) and cyclic compounds (88%), whereas VLCAs make up 97% of the wax of G. xanthochymus. We show that treating isolated cuticles with methanol almost quantitatively releases the cyclic fraction while leaving the VLCA fraction essentially intact. All VLCAs were subsequently removed using chloroform. In both species, the permeance of the two model compounds did not change significantly after methanol treatment, whereas chloroform extraction had a large effect on organic solute permeability. CONCLUSION: The VLCA wax fraction makes up the permeability barrier for organic solutes, whereas cyclic compounds even in high amounts have a negligible role. This is of significance when optimizing the foliar uptake of pesticides. © 2019 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Assuntos
Garcinia/fisiologia , Compostos Orgânicos/química , Folhas de Planta/fisiologia , Prunus/fisiologia , Ceras/química , Transporte Biológico , Difusão , Permeabilidade
2.
Electron. j. biotechnol ; 40: 45-51, July. 2019. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-1053457

RESUMO

Background: This research is intended to determine suitable types and concentrations of plant growth regulators (PGRs) to induce callus on stem and leaf sections of 4 species of the genus Garcinia, namely, Garcinia mangostana, Garcinia schomburgkiana, Garcinia cowa, and Garcinia celebica. The base medium was MS medium containing 30 g l -1 sucrose, 0.5 g l-1 polyvinylpyrrolidone (PVP), and 7 g l-1 agar, and for the different treatments, PGRs were added to the medium as follows: thidiazuron (TDZ) at concentrations of 0, 0.1, 0.5, 1, and 2 mg l-1; 6-(3- hydroxybenzylamino) purine (meta-topolin) at concentrations of 0, 0.5, 2.5, and 5 mg l-1; 4-amino-3,5,6- trichloro-2-pyridinecarboxylic acid (picloram) at concentrations of 0, 0.5, 2.5, and 5 mg l-1; and 2,4- dichlorophenoxyacetic acid (2,4-D) at concentrations of 0, 0.5, 1, 2, and 4 mg l-1. The occurrence of callus was observed after 4 weeks. Results: A maximum of 100% and 93% of G. mangostana leaf explants formed callus in the 0.5 mg l-1 and 1 mg l-1 TDZ treatments, respectively, while 100% of G. schomburgkiana stem explants formed callus in the 1 mg l-1 TDZ treatment and 89% of G. schomburgkiana leaf explants formed callus in the 0.5 mg l-1 picloram treatment. The highest callus induction rate for G. cowa was 62% in the 1 mg l-1 TDZ treatment and for G. celebica was 56% in the 0.5 mg l-1•mT-1 treatment. Conclusions: For all 4 species, the greatest amount of large nodular callus was observed in the TDZ treatments. White, friable callus was observed on most of the 2,4-D and picloram treatment groups. Most meta-topolin treatments resulted in minimal callus formation.


Assuntos
Reguladores de Crescimento de Plantas/metabolismo , Garcinia/crescimento & desenvolvimento , Compostos Fitoquímicos/metabolismo , Compostos de Fenilureia , Tiadiazóis , Fatores de Tempo , Transformação Genética , Clusiaceae/crescimento & desenvolvimento , Garcinia/fisiologia , Técnicas de Cultura de Tecidos
3.
Plant Cell Environ ; 40(12): 3055-3068, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28926102

RESUMO

Net photosynthetic carbon uptake of Panamanian lowland tropical forest species is typically optimal at 30-32 °C. The processes responsible for the decrease in photosynthesis at higher temperatures are not fully understood for tropical trees. We determined temperature responses of maximum rates of RuBP-carboxylation (VCMax ) and RuBP-regeneration (JMax ), stomatal conductance (Gs ), and respiration in the light (RLight ) in situ for 4 lowland tropical tree species in Panama. Gs had the lowest temperature optimum (TOpt ), similar to that of net photosynthesis, and photosynthesis became increasingly limited by stomatal conductance as temperature increased. JMax peaked at 34-37 °C and VCMax ~2 °C above that, except in the late-successional species Calophyllum longifolium, in which both peaked at ~33 °C. RLight significantly increased with increasing temperature, but simulations with a photosynthesis model indicated that this had only a small effect on net photosynthesis. We found no evidence for Rubisco-activase limitation of photosynthesis. TOpt of VCMax and JMax fell within the observed in situ leaf temperature range, but our study nonetheless suggests that net photosynthesis of tropical trees is more strongly influenced by the indirect effects of high temperature-for example, through elevated vapour pressure deficit and resulting decreases in stomatal conductance-than by direct temperature effects on photosynthetic biochemistry and respiration.


Assuntos
Carbono/metabolismo , Fotossíntese/fisiologia , Árvores/fisiologia , Calophyllum/fisiologia , Calophyllum/efeitos da radiação , Ficus/fisiologia , Ficus/efeitos da radiação , Florestas , Garcinia/fisiologia , Garcinia/efeitos da radiação , Lagerstroemia/fisiologia , Lagerstroemia/efeitos da radiação , Luz , Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos da radiação , Ribulose-Bifosfato Carboxilase/metabolismo , Temperatura , Árvores/efeitos da radiação
4.
Ecology ; 96(10): 2737-47, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26649394

RESUMO

The largest fruits found in tropical forests may depend on complementary seed dispersal strategies. These fruits are dispersed most effectively by megafauna, but populations can persist where megafauna are absent or erratic visitors. Smaller animals often consume these large fruits, but their capacity to disperse these seeds effectively has rarely been assessed. We evaluated the contributions of gibbons (Hylobates lar) and other frugivores in the seed dispersal of the megafaunal fruit Garcinia benthamii, using the SDE (seed dispersal effectiveness) landscape. Gibbons preferentially consumed G. benthamii fruits and were the main seed disperser that we observed. However, gibbons became satiated when availability was high, with 57% of fruits falling to the ground unhandled. Recruitment of seedlings from gibbon-dispersed seeds was also very low. Elephants consumed G. benthamii fruit, but occurred at low density and were rare visitors to the trees. We suggest that gibbons might complement the seed dispersal role of elephants for G. benthamii, allowing limited recruitment in areas (such as the study site) where elephants occur at low density. Fruit availability varied between years; when availability was low, gibbons reliably consumed most of the crop and dispersed some seeds that established seedlings, albeit at low numbers (2.5 seedlings per crop). When fruit availability was high, the fruit supply overwhelmed the gibbons and other arboreal frugivores, ensuring a large abundance of fruit available to terrestrial seed dispersers. Although gibbons effectively dispersed more seeds at these times (20.7 seedlings per crop), there was the potential for elephants to move many more seeds. Complementary seed dispersal strategies may be important for megafaunal fruit, because they ensure that very large fruits are able to benefit from megafaunal dispersal but also persist where this dispersal becomes erratic. However, our data suggest that smaller seed dispersers might not be capable of replacing large dispersers, leading to potential changes in landscape-scale dispersal patterns where megafauna are absent.


Assuntos
Garcinia/fisiologia , Hylobates/fisiologia , Sementes , Animais , Besouros , Demografia , Dieta , Florestas , Frutas , Macaca , Sciuridae , Fatores de Tempo
6.
Rev. biol. trop ; 54(3): 927-934, sept. 2006.
Artigo em Espanhol | LILACS | ID: lil-492298

RESUMO

Germination tests on Garcinia intermedia (Clusiaceae) seeds showed the growth of two types of roots: additionally to the primary root, a secondary root crosses the seed lengthwise. To determine its possible role on the survival and growth of this species, 90 seedlings at least six months old (collected in Central Costa Rica) were planted in plastic bags with organic soil, and placed in a greenhouse. The seedlings were treated as follows: treatments in which the primary or secondary root was cut off, and a control group with both roots intact (30 replicates each). After three months 10 seedlings/month/treatment were extracted to measure their height, basal diameter, root length (main and secondary root), and biomass of the stem, roots and seed (without its coat). Control seedlings had the highest growth, followed by those without secondary roots. Nonetheless, more than 90% of the seedlings whose primary roots were cut off, survived after five months of the excision treatment, in part due to the capacity of this species to regenerate its radical system through the seed reserves, sprouting of a primary-like root, and/or the growth stimulus of the secondary root (60% of the total: 20% with sprouts from the primary root stump, 13.3% with a growth stimulus of the secondary root, and 26.7% with both conditions). The length of the sprouted roots was significantly different only on those plants that were extracted during the first two monthly measurements, when compared with the control (F6 = 18.6, F7 = 16.0, p < 0.01).


Assuntos
Garcinia/crescimento & desenvolvimento , Germinação/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/crescimento & desenvolvimento , Garcinia/fisiologia , Raízes de Plantas/fisiologia , Sementes/fisiologia , Fatores de Tempo
7.
Rev Biol Trop ; 54(3): 927-34, 2006 Sep.
Artigo em Espanhol | MEDLINE | ID: mdl-18491634

RESUMO

Germination tests on Garcinia intermedia (Clusiaceae) seeds showed the growth of two types of roots: additionally to the primary root, a secondary root crosses the seed lengthwise. To determine its possible role on the survival and growth of this species, 90 seedlings at least six months old (collected in Central Costa Rica) were planted in plastic bags with organic soil, and placed in a greenhouse. The seedlings were treated as follows: treatments in which the primary or secondary root was cut off, and a control group with both roots intact (30 replicates each). After three months 10 seedlings/month/treatment were extracted to measure their height, basal diameter, root length (main and secondary root), and biomass of the stem, roots and seed (without its coat). Control seedlings had the highest growth, followed by those without secondary roots. Nonetheless, more than 90% of the seedlings whose primary roots were cut off, survived after five months of the excision treatment, in part due to the capacity of this species to regenerate its radical system through the seed reserves, sprouting of a primary-like root, and/or the growth stimulus of the secondary root (60% of the total: 20% with sprouts from the primary root stump, 13.3% with a growth stimulus of the secondary root, and 26.7% with both conditions). The length of the sprouted roots was significantly different only on those plants that were extracted during the first two monthly measurements, when compared with the control (F6 = 18.6, F7 = 16.0, p < 0.01).


Assuntos
Garcinia/crescimento & desenvolvimento , Germinação/fisiologia , Raízes de Plantas/crescimento & desenvolvimento , Plântula/fisiologia , Sementes/crescimento & desenvolvimento , Garcinia/fisiologia , Raízes de Plantas/fisiologia , Sementes/fisiologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...